metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bruno Therrien* and Georg Süss-Fink

Institut de Chimie, Université de Neuchâtel, Case postale 2, CH-2007 Neuchâtel, Switzerland

Correspondence e-mail: bruno.therrien@unine.ch

Key indicators

Single-crystal X-ray study T = 153 K Mean σ (C–C) = 0.014 Å H-atom completeness 72% R factor = 0.052 wR factor = 0.136 Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Di- μ -chloro-bis[chloro(η^6 -1,2,4-trimethylbenzene)ruthenium(II)]–dichloromethane (3/2)

The *meso* form of the title planar chiral dinuclear areneruthenium complex, $[Ru_2Cl_4(C_9H_{12})_2] \cdot 0.67CH_2Cl_2$, is presented. There are one and a half independent dinuclear complexes and one dichloromethane molecule per asymmetric unit. The 1,2,4-trimethylbenzene ligands are involved in slipped-parallel π - π stacking interactions with neighbouring molecules, thus forming a series of one-dimensional multimers along the *a* axis.

Comment

1,2,4-Trimethylcyclohexadiene, accessible by standard Birch reduction, reacts with RuCl₃·*n*H₂O in refluxing ethanol to afford quantitatively the unsolvated title compound [(1,2,4-Me₃C₆H₃)RuCl(μ -Cl)]₂, (I) (Therrien & Süss-Fink, 2004). Coordination of 1,2,4-trimethylbenzene to the Ru atom introduces a planar chirality at the η^6 -arene ligand. Thus, the dinuclear complex (I) is present as a mixture of three species, two enantiomers and a *meso* form. Crystals of the *meso* form (see scheme) were obtained as a solvate by slow evaporation of a dichloromethane solution containing the isomeric mixture of (I).

The complex crystallizes in the centrosymmetric space group $P\overline{1}$, with one and a half independent dinuclear complexes and one dichloromethane molecule per asymmetric unit. The half molecule is related by a crystallographic inversion centre to a second arene-ruthenium moiety and joined by two Cl atoms to form a second dimeric complex. The centrosymmetric dimer (A), as well as the dinuclear complex which lies in a general position (B), are shown in Fig. 1.

All Ru atoms possess a distorted octahedral geometry, surrounded by the η^6 -1,2,4-trimethylbenzene ligand, a terminal Cl atom and two bridging Cl atoms. The metrical parameters around the metallic cores compare well with those of similar dinuclear η^6 -arene–ruthenium [RuCl₂(η^6 -arene)]₂ complexes, *viz*. arene = hexamethylbenzene (McCormick & Gleason, 1988), arene = trindane (Gupta *et al.*, 1997), arene = ethylbenzoate (Therrien *et al.*, 1998), arene = 1,2,3,4-tetrahydronaphthalene (Bown & Bennett, 1999) and arene = indane (Vieille-Petit *et al.*, 2002). In the centrosymmetric molecule (A), the two 1,2,4-trimethylbenzene rings are Received 14 October 2004 Accepted 27 October 2004 Online 6 November 2004

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

ORTEP-3 drawing (Farrugia, 1997) of the *meso* form of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms and the dichloromethane molecule have been omitted for clarity. Unlabeled atoms in molecule A are related to labeled atoms by (2 - x, 1 - y, 1 - z).

Figure 2

The two π -stacking interactions involved in the crystalline packing (*MERCURY*; Bruno *et al.*, 2002).

parallel as demanded crystallographically; however, in molecule *B* the angle between the two rings is $10.5 (2)^{\circ}$. The Ru···Ru distances of 3.728 (1) (molecule *A*) and 3.695 (1) Å (molecule *B*) are too long to be considered as metal-metal single bonds.

The geometry and packing arrangement in the crystal structure is quite interesting. Two independent slippedparallel π -stacking interactions are observed, involving the benzene rings of both molecules. These interactions are shown in Fig. 2. The distance observed between the π - π interacting systems (centroid-centroid = 4.46 and 4.34 Å) are slightly longer than the theoretical value calculated for this stacking mode (Tsuzuki *et al.*, 2002). The π -stacking interacting systems form a series of one-dimensional supramolecular multimers along the a axis (see Fig. 3). The supramolecular chains, which are formed by A and B molecules, respectively, possess different environments. The A multimer is surrounded by four rows of B multimers, whereas the B multimer is surrounded by A and B multimers, as well as dichloromethane molecules. The solvent molecules are found in the void left between chains of B multimer. Indeed, the solvent interacts with a terminal Cl

The molecular packing viewed almost along the a axis, showing the environment of multimers A and B (*MERCURY*; Bruno *et al.*, 2002). Dichloromethane molecules have been omitted for clarity.

atom of molecule *B*. Two dichloromethane molecules form a weak hydrogen-bonded network with two dinuclear complexes, see Fig. 4. The Cl-C distances of the hydrogen bonds are, respectively, 3.66 (1) and 3.56 (1) Å, with C-H \cdots Cl angles of 156.6 and 158.9°. The total distance between the two Cl atoms is 5.981 (4) Å.

Experimental

The title compound was prepared according to a published method (Therrien & Süss-Fink, 2004). Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a dichloromethane solution.

Crystal data

$C_{18}H_{24}Cl_4Ru_2 \cdot 0.67CH_2Cl_2$	<i>Z</i> = 3
$M_r = 640.93$	$D_x = 1.886 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 9.9388 (11) Å	Cell parameters from 7734
b = 12.3703 (13) Å	reflections
c = 14.4034 (17) Å	$\theta = 2.1-25.8^{\circ}$
$\alpha = 97.105 \ (13)^{\circ}$	$\mu = 1.97 \text{ mm}^{-1}$
$\beta = 90.644 \ (13)^{\circ}$	T = 153 (2) K
$\gamma = 105.358 \ (12)^{\circ}$	Plate, orange
$V = 1692.7 (3) \text{ Å}^3$	$0.57 \times 0.36 \times 0.14 \text{ mm}$

metal-organic papers

Data collection

Stoe IPDS diffractometer	3899 reflections with $I > 2\sigma(I)$
φ scans	$R_{\rm int} = 0.062$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.8^{\circ}$
(Blessing, 1995)	$h = -12 \rightarrow 12$
$T_{\min} = 0.463, T_{\max} = 0.759$	$k = -14 \rightarrow 14$
12013 measured reflections	$l = -17 \rightarrow 17$
6090 independent reflections	

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.053$	$w = 1/[\sigma^2(F_o^2) + (0.0745P)^2]$
$wR(F^2) = 0.136$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.93	$(\Delta/\sigma)_{\rm max} < 0.001$
6090 reflections	$\Delta \rho_{\rm max} = 1.61 \text{ e } \text{\AA}^{-3}$
361 parameters	$\Delta \rho_{\rm min} = -1.37 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cl1-Ru1	2.384 (2)	Cl4-Ru2	2.398 (2)
Cl2-Ru1	2.446 (2)	Cl5-Ru3 ⁱ	2.4404 (18)
Cl2-Ru2	2.4461 (17)	Cl5-Ru3	2.449 (2)
Cl3-Ru1	2.4380 (17)	Cl6-Ru3	2.396 (2)
Cl3-Ru2	2.4423 (18)		
Ru1-Cl2-Ru2	98.13 (6)	Cl4-Ru2-Cl3	86.82 (7)
Ru1-Cl3-Ru2	98.44 (6)	Cl4-Ru2-Cl2	86.97 (7)
Ru3 ⁱ -Cl5-Ru3	99.36 (7)	Cl3-Ru2-Cl2	81.01 (6)
Cl1-Ru1-Cl3	87.82 (7)	Cl6-Ru3-Cl5	87.15 (7)
Cl1-Ru1-Cl2	86.79 (7)	Cl5 ⁱ -Ru3-Cl5	80.64 (7)
Cl3-Ru1-Cl2	81.11 (6)		

Symmetry code: (i) 2 - x, 1 - y, 1 - z.

H atoms were included in calculated positions (C-H = 0.93– 0.97 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$.

Data collection: *EXPOSE* in *IPDS Software* (Stoe & Cie, 2000); cell refinement: *CELL* in *IPDS Software*; data reduction: *INTE-GRATE* in *IPDS Software*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Swiss National Science Foundation (grant No. 20-61227-00). We thank Professor H. Stoeckli-Evans for helpful discussions and free access to X-ray facilities.

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bown, M. & Bennett, M. A. (1999). Acta Cryst. C55, 852-854.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389–397.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gupta, H. K., Lock, P. E., Hughes, D. W. & McGlinchey, M. J. (1997). Organometallics, 16, 4355–4361.
- McCormick, F. B. & Gleason, W. B. (1988). Acta Cryst. C44, 603-605.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.
- Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.
- Therrien, B., Ward, T. R., Pilkington, M., Hoffmann, C., Gilardoni, F. & Weber, J. (1998). *Organometallics*, **17**, 330–337.
- Therrien, B. & Süss-Fink, G. (2004). Inorg. Chim. Acta, 357, 219-224.
- Tsuzuki, S., Honda, K., Uchimura, T., Mikami, M. & Tanabe, K. (2002) J. Am. Chem. Soc. 124, 104–112.
- Vieille-Petit, L., Therrien, B. & Süss-Fink, G. (2002). Acta Cryst. E58, m656– m657.